Для ряда наполнителей характерно придание полимерам (при больших степенях наполнения) антистатических или даже электропроводящих свойств. Электропроводность композиций определяющим образом влияет на скорость спада их электретного заряда. Например, порог перколяции, то есть концентрация технического углерода, при котором композиция начинает проводить электрический ток, для саженаполненного полиэтилена составляет, в зависимости от марки, от 9 до 14 об. %. Композиции с концентрацией технического углерода выше этого значения не электретируются в коронном разряде.
Таким образом, на основе крупнотоннажных полимеров возможно создание электретных материалов с ярко выраженным электретным эффектом, что достигается введением в них 2-6 об. % дисперсного наполнителя.
Вышеуказанные объяснения подтверждаются с помощью данных термостимулированной деполяризации (ТСД) полимерных и композиционных электретов. При изучении спектров ТСД впервые было обнаружено появление при наполнении полимеров новых уровней захвата инжектированных носителей зарядов (рис. 6-9).
Наряду с пиками, характерными для ненаполненных полимеров (например, полиэтилена - при ~80 °С и -110 °С), на спектрах ТСД наблюдаются новые пики (для полиэтилена - два пика при -165 °С и -200 °С). Энергии активации процесса релаксации заряда, соответствующих новым пикам в полимерных композициях, в 2-3 раза больше, чем энергия активации релаксации заряда в ненаполненных полимерах. Чем больше наполнителя, тем больше интенсивность пиков на кривых ТСД (рис. 6, 7), что вполне ожидаемо, поскольку с ростом наполнения увеличивается площадь границы раздела фаз полимер - наполнитель.
Появление новых пиков ТСД характерно для всех исследуемых композиционных короноэлектретов (рис. 8, 9).
С позиции обнаруженных закономерностей интересными представляются данные изучения композиционных электретов на основе полиэтилена и сегнетоэлектрических наполнителей (рис. 10). Если композиции перед электретированием в коронном разряде нагревались до 90 °С, то на спектрах токов ТСД после пиков, характерных для ПЭВД наблюдался положительный пик при температуре ~145 °С (рис. 10, кр. 1, 3). Если же предварительный нагрев осуществлялся до 145 °С, то на спектрах токов ТСД наблюдалось появление отрицательных пиков при температуре ~140 °С (рис. 10, кр. 2, 4).
При термообработке ненаполенных полимеров, не обладающих высокотемпературными уровнями захвата инжектированных носителей зарядов, релаксация заряда происходит полностью. В то же время, величины Uspn и Оэ<р композиционных электретов до нулевых значений не спадают, что подтверждает сделанное предположение.
Приведенные данные позволяют предположить возможность получения электретных изделий непосредственно из электретных пленок и пластинок вакуум-, пневмоформованием, штампованием - обычными методами переработки пластмасс.