Уже более столетия химики вовлечены в поиск соединений, которые могут служить медикаментами для лечения разнообразных болезней. В результате этих усилий на счету сегодняшней химиотерапии имеется впечатляющий ряд достижений. Однако, как мы уже говорили в начале этой книги, эти достижения получены ценой огромного труда, потраченного на получение тысяч и тысяч соединений, тщательный скрининг их свойств и параметров активности, после чего только и стало возможным выбрать из этих тысяч кандидатов единичные соединения, удовлетворяющие требованиям медицинской практики. Такой трудоемкий и требующий больших затрат времени подход был неизбежен из-за сложности проблемы, умноженной на почти полное отсутствие понимания механизмов и тонких особенностей взаимодействия живого организма с чужеродными веществами (ксенобиотиками), даже если речь идет о традиционных и хорошо изученных лекарствах. Так, например, аспирин (О-ацетилсалициловая кислота) вошел в медицинскую практику в 70-х годах XIX в. и с тех пор широко применяется как эффективное болеутоляющее и противовоспалительное средство. Только в США его годовое производство достигает 40 млн. фунтов. Тем не менее, многочисленные исследования механизма действия аспирина до сих пор не привели к созданию адекватного объяснения многосторонней картины воздействия аспирина на организм человека.
Эти проблемы, наряду с другими не менее важными, такими, как кратковременные и отдаленные побочные эффекты лекарств, их транспорт к мишеням (поврежденным органам и тканям), пролонгирование действия, совместимость с другими лекарствами, аллергические эффекты и т.д., и т.п., были в центре внимания исследователей на протяжении всей эры химеотерапии. В результате был накоплен громадный фактический материал, позволяющий значительно облегчить первичную оценку соотношений структура/активность внутри серии родственных соединений.
Успехи, достигнутые за последние два десятилетия объединенными усилиями молекулярной биологии, медицинской химии и органической химии привели к кардинальным изменениям в этой области. Стало возможным описать главные биохимические события, происходящие в клетках, тканях или органах, в терминах молекулярной биологии и распознать системы, в наибольшей степени затронутые при патологических состояниях организма. Понимание причин, вызывающих сбой в функционировании биохимических систем, открывает пути для выработки более рациональных подходов к поиску новых лекарственных средств. Основной принцип таких подходов состоит в выяснении мишеней, на которых должно быть нацелено действие потенциальных лекарств, за которым следует дизайн структуры, способной эффективно взаимодействовать с мишенью. Иными словами, общая проблема разработки подходящего лекарства теперь может быть сформулирована более определенно и конкретно, как, например, создание ингибиторов для некоторой ферментативной системы, либо агентов, влияющих на биосинтез ДНК, репликацию или экспрессию генов, либо факторов, воздействующих на гормональную систему, либо что-то иное, способствующее восстановлению нормального функционирования поврежденной биохимической системы. Такая гораздо более детализированная трактовка требований медицинского «заказчика» уже может быть, по крайней мере, в первом приближении, переведена на язык химических структур. «Заказ» становится понятным «исполнителю» - химику-органику, а его выполнение - в пределах возможностей его профессионального искусства. Задача становится объектом молекулярного дизайна (в противоположность традиционному пути слепого эмпирического поиска). Разумеется, даже самая современная наука с ее мощным методическим арсеналом и огромным объемом накопленной информации (в сочетании с техническими средствами ее обработки) пока что неспособна с абсолютной точностью предсказать структуру оптимального лекарственного вещества с четко очерченной картиной воздействия на организм. Тем не менее, с помощью такого подхода уже можно резко сузить поле поисков и ограничить его сравнительно немногими кандидатами для выбора оптимальной структуры.